ever increasing bandwidth requirements in automotive networks impede the applicability of CAN due to its bit-rate limitation to 1 MBit/s. To close the gap between CAN and other protocols, we have improved CAN in two ways:

I Support of bit-rates higher than 1 Mbit/s,
II Support of payloads larger than 8 byte.

We achieve this with a new frame format where we can switch inside the frame to a faster bit-rate for I and use a different data length coding for II. This new protocol is called “CAN with Flexible Data-Rate” or CAN-FD. CAN-FD protocol controllers are also able to perform standard CAN communication. This allows using CAN-FD in specific operation modes, e.g. soft-

The CAN-FD frame format

The Control Field in normal CAN (ISO 11898-1) frames contains reserved bits, which are specified to be transmitted dominantly. In the CAN-FD frame, the reserved bit after the IDE bit (11-bit Identifier) or after the RTR bit (29-bit Identifier) is defined as Extended Data Length (EDL) bit and is transmitted recessively. This sets the receiving BSP and BTL FSMs into CAN-FD decoding mode.

The following bits are new in CAN-FD compared with CAN:
- EDL Extended Data Length
- r1, r0 reserved (transmitted dominantly)
- BRS Bit Rate Switch
- ESI Error State Indicator

The DLC values from 0000b to 1000b still code a Data Field length from 0 to 8 byte, while the DLC values from 1001b to 1111b are defined in CAN-FD to code Data Fields with a length of 12, 16, 20, 24, 32, 48, respectively 64 byte.

The EDL bit distinguishes between the normal CAN frame format and the CAN-FD frame format. The value of the BRS bit decides, whether the bit-rate in the Data-Phase is the same as in the Arbitration-Phase (BRS dominant) or whether the predefined faster bit rate is used in the Data-Phase (BRS recessive).

In CAN-FD frames, the EDL bit is always recessive and followed by the dominant r0 bit. This provides an edge for resynchronization before an optional bit-rate switch. The edge is also used to measure the transceiver’s loop delay for the optional TDC.

In CAN-FD frames, the transmitter’s error state is indicated by ESI, dominant for error active and recessive for error passive. This simplifies network management.

There are no CAN-FD remote frames, the bit at the position of the RTR bit in normal CAN frames is replaced by the dominant r1 bit. However, normal CAN remote frames may optionally be used in CAN-FD systems. Receivers ignore the actual values of the bits r1 and r0 in CAN-FD frames.

<table>
<thead>
<tr>
<th>Arbitration field</th>
<th>Control field</th>
<th>Data field</th>
<th>CRC field</th>
<th>ACK field</th>
<th>End of frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11 bit)</td>
<td>r1</td>
<td>r0</td>
<td>DLC</td>
<td>DATA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EDEL</td>
<td>ESI</td>
<td>(4 bit)</td>
<td>(0 to 64 byte)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15-, 17-, or 21-bit CRC</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A C K</td>
<td>D</td>
</tr>
</tbody>
</table>

Legend
- D delimiter
- IFS inter-frame space

Figure I: Format of the CAN-FD data frame with 11-bit identifier
ware-download at end-of-line programming, while other controllers that do not support CAN-FD are kept in standby.

The CAN-FD protocol [1] has been developed with the goal to increase the bandwidth of a CAN network while keeping unchanged most of the software and hardware (especially the physical layer). Consequently, only the CAN protocol controllers need to be enhanced with the CAN-FD option. The new frame format makes use of CAN's reserved bits. Via these bits, a node can distinguish between the frame formats during reception. CAN-FD protocol controllers can take part in normal CAN communication. This allows a gradual introduction of CAN-FD nodes into existing CAN systems.

Basic principles

The CAN-FD protocol is a similar approach as proposed in [2] and [4] increasing the bandwidth by modification of the frame format. Two changes suggest themselves. Firstly, improving the header to payload ratio by allowing longer data fields. Secondly, speeding up the frames by shortening the bit time.

But these steps are only the groundwork, some additional measures are needed, e.g. to keep the Hamming distance of the longer frames at the same level as in normal CAN communication and to account for the CAN transceiver’s loop delay.

The CRC polynomial of CAN is suited for patterns of up to 127 bit in length including the CRC sequence. Increasing the CAN frame’s payload makes longer polynomials necessary.

In a CAN protocol controller, the Bit Timing Logic (BTL) state machine is evaluated once each time-quantum and synchronizes the position of the Sample-point to a specific phase in relation to the edges in the monitored bit stream. Once each CAN bit-time, at the Sample-point, the bit-value is decided and the Bit Stream Processor (BSP) state machine is evaluated to decode (in transmitters to encode) the CAN frame. A shift register links the frame’s serial bit stream with the controller’s message memory.

CAN nodes synchronize on received edges from recessive-to-dominant on the CAN bus-line. The phases of their Sample-points are shifted relative to the phase of the transmitter’s Sample-point. A node’s specific phase-shift depends on the signal delay-time from the transmitter to that specific node.

The signal delay-time between the nodes needs to be considered when more than one node may transmit a dominant bit. This is the case in the arbitration field or in the acknowledge slot. The configuration of the CAN bit-time, especially the Propagation Segment’s length and the Sample-point’s position, must ensure that twice the maximum phase shift fits between the Synchronization Segment and the Sample-point. Once the arbitration is decided, until the end of the CRC Field, only one node transmits dominant bits, all other nodes synchronize themselves to this single transmitter. Therefore it is possible to switch to a pre-defined (shorter) bit-time in this part of a CAN frame, in CAN-FD called the Data-Phase. The rest of the frame, outside the Data-Phase, is called the Arbitration-Phase.

All nodes in the network must switch to this shorter bit-time synchronously at the start of the Data-Phase and back to the normal bit-time at the end of the Data-Phase. Figure 1 shows an example for the average bit-rate that can be achieved with a bit-rate of 0,5 Mbit/s in the Arbi-
Current CAN transceivers may have, according to ISO 11898-5, a loop-delay (CAN-Tx pin to CAN-Rx pin) of up to 255 ns. In order to detect a bit error inside a bit-time of the Data-Phase, this bit-time has to be significantly longer than the loop-delay. To make the length of a short bit-time independent of the transceiver’s loop delay, CAN-FD provides the Transceiver Delay Compensation (TDC) option.

Additional CRC polynomials

The error detection capabilities and operational safety of the normal CAN protocol are discussed in [7], [8], and [9]. CAN-FD maintains all of CAN’s fault confinement mechanisms, including Error Frames, error counters, error-active/passive modes, and positive acknowledging for fault-free messages. Since CAN-FD allows longer data fields than normal CAN, the CRC (Cyclic Redundancy Check) sequence needs to be adapted in order to keep the frame’s Hamming Distance at the same value of 6. We chose two new BCH-type CRC polynomials: g17 for frames with up to 16 data bytes, g21 for frames with more than 16 data bytes.

\[
g17 = x^{17} + x^{16} + x^4 + x^3 + x^{13} + x^6 + x^4 + x^3 + x^4 + 1
\]

\[
g21 = x^{21} + x^{20} + x^{15} + x^1
\]

For this reason, the length of the CRC sequence in CAN-FD data frames depends on the DLC. At the beginning of a frame, all nodes, including the transmitter, start to calculate the frame’s CRC sequence according to all three polynomials, g17, g21, and the normal CAN polynomial. When the frame format is decided in the Control Field and the DLC is transmitted, one of the three polynomials is selected. The transmitter uses the selected polynomial to generate the frame’s CRC sequence. The receivers use the applicable polynomial to decide whether the frame is to be acknowledged.

In normal CAN, the stuff-bits, which are inserted into the bit-stream to ensure that there are enough edges for resynchronization, are not considered for CRC calculation. As described e.g. in [7], two bit-errors may on rare occasion remain undetected when the first generates a bit-stuffing condition and the second then removes a stuff condition (or vice versa), shifting the position of the frame bits between the two bit-errors. The shifted area may lead to a burst error that is too long for the CRC mechanism.

The treatment of stuff-bits in CAN-FD is changed to ensure that this cannot happen. The simplest measure would have been to include all stuff-bits into the CRC calculation. However, this would prevent the well-proven CRC hardware implementation with the feedback shift-register that calculates the CRC sequence while the frame is in progress. The solution consists of two measures: Including the stuff-bits preceding the CRC sequence into the CRC calculation and changing the stuffing mechanism for the CRC sequence. Contrary to the normal CAN bit-stuffing method, where a stuff-bit of inverse polarity is inserted after every five consecutive bits of the same polarity, the positions of the stuff-bits in the CAN-FD’s CRC sequence are fixed: The CRC sequence starts with a stuff-bit and additional stuff-bits are inserted after every four bits of the sequence. Each of these fixed stuff-bits has the inverse polarity of its preceding bit. The number of stuff-bits in the CRC sequence is equal to the maximum number of stuff-bits according to the normal CAN bit-stuffing method.
Total System Integration

PowerView™ Displays 7 and 4.3 inches Freely-configurable

- CAN 2.0B
- SAE J1939
- CANopen
- NMEA 2000
- PAL/NTSC video
- RS485 modbus
- USB 2.0
- Data logging
- IP67
- -40 to +85°C operation

In the U.S.
FW Murphy
P.O. Box 470248, Tulsa, OK 74147 USA
tel. +1 918 317 2604 fax +1 918 317 4266
e-mail: sales@fwmurphy.com
http://www.fwmurphy.com/pv750-ivt

In Europe
Frank W. Murphy, Ltd.
Switchgage House, Church Rd., Laverstock
Salisbury SP1 1QZ, U.K.
tel. +44 1722 410055 fax +44 1722 410088
e-mail: sales@fwmurphy.co.uk
http://www.fwmurphy.co.uk/pv750
stuffing mechanism. As in the normal CAN bit-stuffing mechanism, the maximum number of consecutive bits with the same value is five, the maximum distance between edges for resynchronization is ten.

CAN bit-time switching

There are two sets of configuration registers in CAN-FD: The first for the bit-time in the Arbitration-Phase and the second for the bit-time in the Data-Phase.

The BTL and Bit-Rate Prescaler (BRP) FSMs switch to the second bit-time configuration at the Sample-Point where the BRS bit is sampled recessive. They switch back to the first bit-time at the Sample-Point of the CRC Delimiter, or when an error condition is detected that causes an error frame.

Figure 3 shows an example for the bit-time configurations, in which the data-rate in the Data-Phase is four times faster than in the Arbitration-Phase. Both, the length of tq and the number of tq in the bit-time may be different in the two configurations. The two configurations may be identical, but the bit-time in the Data-Phase may not be longer than in the Arbitration-Phase. The two bits, in which the bit-rate switch happens are of intermediate length, since the configurations are switched at Sample-Points (see Figure 4). Together the two bits are as long as the sum of one of each of the bit-times.

Switching the bit-time configurations at the Sample-Point instead of after the end of Phase_Seg2 is necessary to ensure that a following synchronization is performed in all nodes according to the parameters of the second bit-time configuration. Phase-shifts between the nodes may result in not all of them agreeing on the border between Phase_Seg2 and the subsequent Sync_Seg.

Figure 4 shows the simulation of a test case, in which CAN_0 and CAN_1 arbitrate for the CAN network. The signals CAN_Tx and CAN_Rx are the interface between the protocol controllers and the transceivers. The Sample-Point shows where the CAN-Rx input is captured. The signals f_tx and f_rx show where the bit-rate is switched; they could be used for mode switching in CAN-FD optimized transceivers, enabling even higher bit-rates in the Data-Phase. Both nodes send the same base CAN identifier. CAN_0 sends a CAN-FD frame with 11-bit identifier, while CAN_1 sends an extended frame and loses arbitration at the SRR bit.

Transmitters do not synchronize on “late” edges (those detected between Sync_Seg and Sample-point) otherwise the transceiver loop-delay would cause them to lengthen dominant bits. So as transmitter CAN_1 did not synchronize on CAN_0 before the edge from EDL to r0.

In the simulated test case, there is a delay of 433 ns between the nodes; they use a bit-rate of 1 Mbit/s in the Arbitration-Phase and 10 Mbit/s in the Data-Phase. At the SRR bit, where CAN_1 loses arbitration, its Sample-Point is 350 ns (see strobes 1 and 2) earlier than that of CAN_0.

CAN_1 synchronizes to CAN_0 at the edge from EDL to r0. Afterwards its Sample-Point comes 433 ns (the signal propagation time between the nodes) after that of CAN_0 (see strobes 3 and 4). Both nodes switch their bit-rate at the Sample-Points of their BRS bits (see strobes 5 and 6). The signal f_tx shows the transmitter’s Data-Phase, f_rx the receiver’s. They both are reset at the CRC Delimiter, before the Acknowledge bit is sent by CAN_1.

The CRC Delimiter seen by the transmitter CAN_0 is prolonged by the signal propagation time, the Acknowledge bit conforms to the Arbitration-Phase’s bit-rate.

The analog input signal at CAN_Rx needs to be synchronized to the clock of the BTL FSM. Together with the BTL’s time step size of one tq, this digitization delay limits the time resolution of the CAN bit-synchronization. This means a phase-error of up to one tq may remain after a (re-)synchronization; the synchronization quality depends on the duration of the tq. The Sync_Seg with a fixed duration of one tq compensates for this residual phase-error in CAN bit-timing, but one tq in the first bit-time may correspond to several tq in the second bit-time. The maximum possible residual phase-error has to be taken into account for the configuration. Setting tq to the same duration in both configurations maximizes the tolerance range.

In existing CAN implementations, the maximum number of time quanta in a bit-time is 25, while the duration of the tq is defined by the controller’s clock period and the BRP. This allows only few combinations of bit-time configurations for the Arbitration-Phase and for the Data-Phase with the same tq duration.

In automotive applications, with a bit-rate of e.g. 0.5 Mbit/s or 1 Mbit/s in the Arbitration-Phase, the acceleration in the Data-Phase is limited to a factor of about five. The reasons for this limit are the minimum pulse-width in the receive path of currently available transceivers and EMI considerations. In other applications, long bus-lines may limit the bit-rate in the Arbitration-Phase to e.g.
A mobile dialogue: Robust and simple to operate

One of 7844 products we developed for you with passion: Dialogue module PDM360 NG for mobile vehicles.

The powerful process and dialogue unit of the latest generation has a scratch-resistant high-resolution 7" TFT colour display. 9 backlit function keys with tactile feedback guarantee intuitive operation in the field.

Its robust diecast housing with protection rating IP 67 ensures the highest reliability for mounting inside or outside the cabin. It is easy to program and allows immediate fast and flexible use.
125 kbit/s, enabling a higher acceleration factor.

Figure 6 shows how the average bit-rate of a CAN network that needs a bit-time of 8 μs in Arbitration-Phase can be accelerated without exceeding the specification range of existing CAN transceivers in the Data-Phase. Figure 7 shows how this acceleration is increased when the Data field gets longer. The advantage of the improved header to pay-load ratio rises with the acceleration factor between Arbitration-Phase and Data-Phase.

ISO 11898-1 allows more than 8 tq for each of the bit-time segments Prop_Seg, Phase_Seg1, and Phase_Seg2. We increased the configuration range to 16 tq for Phase_Seg2 and to 64 tq for the sum of Prop_Seg and Phase_Seg1 in our CAN-FD implementation. This allows a wide range of bit-time combinations with the same tq length. The range of the SJW (Synchronization Jump-Width) configuration is also increased to 16 tq for CAN-FD applications. This enables a high acceleration factor with a low residual phase-error at the BRS bit.

Transceiver Delay Compensation

Current CAN transceivers may have, according to ISO 11898-5, a loop delay (from the CAN-Tx pin to the CAN-Rx pin) of up to 255 ns. Since transmitters are required to check for errors in their transmitted bits, this would set a lower limit for the bit time in the Data-Phase if the check needs to be done at the bit’s Sample-point.

Measurements have shown that existing CAN transceivers are able to transmit and receive bits that are shorter than their loop-delay. In this case the check for bit-errors needs to be delayed until the bit value, which is transmitted at the CAN-Tx output is looped-back to the CAN-Rx input. This is the purpose for the transceiver loop delay.

CAN-FD measurements

The output pin T2_Tx already starts the DLC before the ESI bit reaches the input pin T2_Rx or, after the bus-line delays, the receivers’ input pins R3_Rx and R9_Rx.

The example in Figure II shows a complete CAN-FD frame with 29-bit CAN-identifier and 64 data bytes. Here the complete Data-Phase is (at 12 Mbit/s) shorter than 23 bit of the Arbitration-Phase. In the example, there is CAN arbitration in the first bits of the CAN identifier, superposition of Acknowledge bits from near and from distant receivers virtually prolongs that bit.
offers CAN and CANopen training for development engineers and system integrators. Topics include application fields, physical layer, protocol, communication services, standardization, and certification.

Seminars

CAN training
2012-10-17 Nuremberg (DE)
2012-12-11 Nuremberg (DE)

CANopen training
2012-06-12 Nuremberg (DE)
2012-06-13 Ljubljana (SI)
2012-10-04 Zürich (CH)
2012-10-18 Nuremberg (DE)
2012-10-25 Essen (DE)
2012-11-06 Nuremberg (DE)
2012-11-07 Prague (CZ)
2012-11-15 Helsinki (FI)
2012-12-04 Gothenburg (SE)
2012-12-12 Nuremberg (DE)

Special CANopen training
CleANopen 2012-06-28 Nuremberg (DE)
Safety 2012-09-28 Nuremberg (DE)

In-house seminars
In-house seminars are offered for companies, which have dedicated training requirements.

For more details please contact the CiA office at headquarters@can-cia.org

SIL 3 CANOPEN SAFETY

Safe Single and Multiturn Absolute Position Measurement with CANopen Safety Interface

Compliant with New Machine Directive EN2006/42/EC

Highest Safety Standards with SIL 3 EN/IEC 62061, Cat.4 and PL e EN ISO 13849-1

Certified by TÜV Rheinland®

Redundant High Resolution Optical Design up to 30 Bit

Customer Advantage:
No PLC Plausibility Check for Position Value Needed

www.posital.eu

POSITAL GmbH
Carwerkstraße 13c, 51063 Koeln, Germany
T +49 (0)221-96213-0, F +49 (0)221-96213-20

FRABA Inc.
1800 East State Street, Suite 148 Hamilton, NJ 08619, USA
T +1-609-750-6706, F +1-609-750-5703

FRABA Pte. Ltd.
8 Temasek Boulevard, #42-10 Suntec Tower Three
Singapore 038988, Singapore
T +65-6829-2348, F +65-6829-2121
Conclusion
CAN-FD is a new protocol that combines CAN’s core features with a higher data rate. For automotive applications using star-topologies, CAN-FD targets an average data rate of 2.5 Mbit/s with existing CAN transceivers, resulting in the same effective payload as a low-speed Flexray network.

Using bus-line topologies will allow data-rates up to 8 Mbit/s. There is an easy migration path from CAN systems to CAN-FD systems since CAN application software can be left unchanged (apart from configuration). The Bosch CAN IP modules are currently being adapted to optionally support the CAN-FD protocol.

References

Figure 5: CAN-FD bit-time switching after bus arbitration

Figure 6: CAN-FD example for long bus lines

Figure 7: Average bit-rates for long bus lines
Point of the CRC Delimiter is reached, the CAN-FD protocol controller switches back the bit-rate and returns to normal bit-error checking. The transmitters disregard the actual value of the CRC Delimiter bit using the TDC mechanism. A global error at the end of the CRC field will cause the receivers to send error frames that the transmitter will detect during Acknowledge or End-of-Frame (EOF).

References

